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Abstract

A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network
construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a
transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-
directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on
untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50
potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and
weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution
obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic
distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of
metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a
sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold).
Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the
ensemble of transition matrices calculated using the means and variances of their singular value distributions as a
diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed
random variables. The model allows us to simulate and quantify disease progression pathways and timescales of
progression from the lung position to other sites and we highlight several key findings based on the model.
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Introduction

The identification of circulating tumor cells (CTCs) in the

human circulatory system dates back to Ashworth’s 1869 paper [1]

in which he identified and pointed out the potential significance of

cells similar to those found in the primary tumor of a deceased

cancer victim. Since then, there has been sporadic focus on CTCs

as a key diagnostic tool in the fight against cancer, based mostly on

the so-called ‘seed and soil’ hypothesis [2–4] of cancer metastasis,

in which the CTCs play the role of seeds which detach from the

primary tumor, disperse through the bloodstream, and get trapped

at various distant sites (typically small blood vessels of organ

tissues), then, if conditions are favorable, extravasate, form

metastases, and subsequently colonize. The metastatic sites offer

the soil for potential subsequent growth of secondary tumors.

Paget’s 1889 seed-and-soil hypothesis [3] asserts that the

development of secondary tumors is not due to chance alone,

but depends on detailed interactions, or cross-talk, between select

cancer cells and specific organ microenvironments. In 1929,

J. Ewing challenged the seed-and-soil hypothesis [5] by proposing

that metastatic dissemination occurs based on purely mechanical

factors resulting from the anatomical structure of the vascular

system, a proposal that is now known to be too simplistic an

explanation for the metastatic patterns that are produced over

large populations. While the seed-and-soil hypothesis remains a

bedrock theory in cancer research, it has been significantly refined

over the years to incorporate our current level of understanding on

how the ability for a tumor cell to mestastasize depends on its

complex interactions with the homeostatic factors that promote

tumor cell growth, cell survival, angiogenisis, invasion, and

metastastasis [2].

A schematic diagram associated with the metastatic process is

shown in Figure 1. Here, the primary tumor (from which the

CTCs detach) is located in the lower part of the diagram and the

distant potential secondary locations where CTCs get trapped and

form metastases are shown. In this paper, we will not be concerned

with extravasation, colonization and the formation of secondary

tumors which are complex processes in their own right [4], but

rather with a probabilistic description of metastatic progression

from primary neoplasm to metastatic sites; hence, we provide a

quantitative framework for charting the time-evolution of cancer

progression along with a stochastic description of the complex

interactions of these cells with the organ microenvironment. Also

shown in the figure are representative scales of a typical red blood

cell (8 mm), capillary diameter (5–8 mm), CTC (20 mm), and

human hair diameter (100 mm). The total number of remote sites
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at which metastases are found for any given type of primary cancer

is relatively small (see the autopsy data set described in [6]), say on

the order of 50 locations, those sites presumably being the

locations at which CTCs get trapped and subsequently colonize.

For any individual making up the ensemble, of course, the number

of sites with metastatic tumors would be much smaller. A ‘ballpark’

estimate, based on the ratio of mets to primaries (from [6]) suggests

a number around 9484/3827,2.5, although in the modern era,

this number is probably higher. A reasonably thorough overview

of this process is described in [7].

It wasn’t until recently, however, that important technological

developments in the ability to identify, isolate, extract, and

genetically and mechanically study CTCs from cancer patients

became available (see, for example [8–15]). These new approach-

es, in turn, produced the need to develop quantitative models

which can predict/track CTC dispersal and transport in the

circulatory and lymphatic systems of cancer patients for potential

diagnostic purposes. As a rough estimate, data (based primarily on

animal studies) shows that within 24 hours after release from the

primary tumor, less than 0.1% of CTCs are still viable, and fewer

than those, perhaps only a few from the primary tumor, can give

rise to a metastasis. There are, however, potentially hundreds of

thousands, millions, or billions of these cells detaching from the

primary tumor continually over time [16,17], and we currently do

not know how to deterministically predict which of these cells are

the future seeds, or where they will take root. All of these estimates,

along with our current lack of detailed understanding of the full

spectrum of the biological heterogeneity of cancer cells, point to

the utility of a statistical or probabilistic framework for charting the

progression of cancer metastasis. This is a particularly important

step for any potential future comprehensive computer simulation

of cancer progression, something not currently feasible. Although

Figure 1. Schematic diagram of human circulatory system showing circulating tumor cells (CTCs) detaching from primary tumor
and getting trapped in capillary beds and other potential future metastatic locations as outlined by the ‘seed-and-soil’ framework.
doi:10.1371/journal.pone.0034637.g001
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the dispersion of CTCs is the underlying dynamical mechanism by

which the disease spreads, the probabilistic framework obviates the

need to model all of the biomechanical features of the complex

processes by which cells journey through the vascular/lymphatic

system. This paper provides the mathematical/computational

framework for such an approach.

In this paper, we develop a new Markov chain based model of

metastatic progression for primary lung cancer, which offers a

probabilistic description of the time-history of the disease as it

unfolds through the metastatic cascade [4]. The Markov chain is a

dynamical system whose state-vector is made up of all potential

metastatic locations identified in the data set described in [6]

(defined in Table 1), with normalized entries that can be

interpreted as the time-evolving (measured in discrete steps k)

probability of a metastasis developing at each of the sites in the

network. One of the strengths of such a statistical approach is that

we need not offer specific biomechanical, genetic, or biochemical

reasons for the spread from one site to another, those reasons

presumably will become available through more research on the

interactions between CTCs and their microenvironment. We

account for all such mechanisms by defining a transition

probability ( which is itself a random variable) of a random walker

dispersing from one site to another, thus creating a quantitative

and computational framework for the seed-and-soil hypothesis as

an ensemble based first step, then can be further refined primarily

by using larger, better, and more targeted databases such as ones

that focus on specific genotypes or phenotypes, or by more refined

modeling of the correlations between the trapping of a CTC at a

specific site, and the probability of secondary tumor growth at that

location.

The Markov chain dynamical system takes place on a metastatic

network based model of the disease, which we calculate based on

the available data over large populations of patients. In particular,

we use the data described in the autopsy analysis in [6] in which

metastatic distributions in a population of 3827 deceased cancer

victims were analyzed. None of the victims received chemotherapy

or radiation. The autopsies were performed between 1914 and

1943 at 5 separate affiliated centers, with an ensemble distribution

of 41 primary tumor types, and 30 metastatic locations. Figure 2

shows histograms of the number of metastases found at the various

sites in the population. Figure 2(a) shows the metastatic

distribution in the entire population, while Figure 2(b) shows the

distribution in the subset of the population with primary lung

cancer. We note that this data offers no particular information on

the time history of the disease for the population or for individual

patients - only the long-time metastatic distribution in a population

of patients, where long-time is associated with end of life, a

timescale that varies significantly from patient to patient (even

those with nominally the same disease). Although this paper

focuses on a model for primary lung cancer, the approach would

work equally well for all of the main tumor types. Indeed, one of

the goals of future studies will be to compare the models obtained

for different cancer types.

Network based models of disease progression have been

developed recently in various contexts such as the spread of

computer viruses [18], general human diseases [19], and even

cancer metastasis [20], but as far as we are aware, our Markov

chain/random walk approach to modeling the dynamics of the

disease on networks constructed for each primary cancer type

from patient populations offers a new and potentially promising

computational framework for simulating disease progression.

More general developments on the structure and dynamics on

networks can be found in the recent works [21–26]. For brief

introductions to some of the mathematical ideas developed in this

paper, see [27–30].

Results

In this section we describe three main results from the model.

First, the model separates the 27 non-zero sites from Figure 2(b)

into what we call ‘first-order’ sites (20 of these), and ‘second-order’

sites (7 of these). Second, the model quantifies the ability of each

site to self-seed by ranking the average edge weight of each site

back to itself (see [31]). Of these, the strongest self-seeders are the

lymph nodes, bone, kidney, and lung. Third, the model allows us

to calculate a time-ordering (model based) associated with

metastatic progression. This is achieved by performing Monte

Carlo simulations of the mean first-passage times from the lung site

to each of the other sites in the network. The mean first-passage

time is the average number of edges a random walker must

traverse in order to hit a given site, hence the number is not

restricted to take on discrete integer values. We think of these

mean first-passage times as the proxy timescale for progression. In

principle, they can be calculated analytically using the fundamen-

tal matrix (see [32]), but in practice, since this involves inverting

the 50650 transition matrix, it is far more convenient to obtain the

results numerically via Monte Carlo simulations. The results will

be described in terms of a ‘random walker’ leaving the lung site

Table 1. Metastatic site numbering system.

# Name # Name

1 Adrenal* 26 Omentum*

2 Anus 27 Ovaries

3 Appendix 28 Pancreas*

4 Bile Duct 29 Penis

5 Bladder 30 Pericardium*

6 Bone* 31 Peritoneum*

7 Brain* 32 Pharynx

8 Branchial Cyst 33 Pleura*

9 Breast 34 Prostate*

10 Cervix 35 Rectum

11 Colon 36 Retroperitoneum

12 Diaphragm* 37 Salivary

13 Duodenum 38 Skeletal Muscle*

14 Esophagus 39 Skin*

15 Eye 40 Small Intestine*

16 Gallbladder* 41 Spleen*

17 Heart* 42 Stomach*

18 Kidney* 43 Testes

19 Large Intestine* 44 Thyroid*

20 Larynx 45 Tongue

21 Lip* 46 Tonsil

22 Liver* 47 Unknown

23 Lung* 48 Uterus*

24 Lymph Nodes (reg)* 49 Vagina*

25 Lymph Nodes (dist)* 50 Vulva

Site numbering system used in transition matrix and network model. The
* indicates an entry in the target vector associated with lung cancer primary
from the data set of [6].
doi:10.1371/journal.pone.0034637.t001
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and traversing the network, moving from site to site along one of

the outgoing edges available to it at the site it is leaving, choosing a

given edge with the probability corresponding to its weighting.

Description of the Markov Chain Model
With the stochastic transition matrix Af , we briefly describe the

basic features and interpretations of a Markov dynamical system

model which we write as:

~vvkz1~~vvkAf , (k~0,1,2,,,,) ð1Þ

The matrix Af is our transition matrix which is applied to a

state-vector~vvk at each discrete time-step k to advance to step kz1:
Thus, it is easy to see that:

~vvk~~vv0Ak
f , ð2Þ

where ~vv0 is the initial-state vector. The underlying dynamics

associated with disease progression is interpreted as a random walk

on the weighted directed network defined by the entries of the

transition matrix.

The State Vectors and Definition of the Steady-state
To interpret the meaning of the initial-state vector and the

transition matrix, one should think of the patient’s initial tumor

distribution in terms of probabilities, or ‘uncertanties’. Thus, an

initial-state vector with a 1 in the 23rd entry:

~vv0~(0,0,0,0,0,0,0,:::,1,:::)

in our 50 node model indicates, with absolute certainty, that the

patient has a primary tumor located in the ‘lung’ (position 23). At

the other extreme, we may have an initial-state vector:

~vv0~(1=50,1=50,1=50,1=50,1=50,1=50,:::)

which indicates that all locations of the initial tumor distribution

are equally likely. One interpretation of this is that we have no

information at all about where the primary tumor is located. A

third possibility is that we have some limited information about the

initial tumor distribution, but not completely certain information,

thus an initial-state vector:

~vv0~(1=2,0,0,0,0,0,1=2,0,0,0,0,0,0,0,0,0,:::)

would indicate that we think it likely that there is a primary tumor

in the ‘adrenal’ (position 1), or ‘brain’ (position 7), but we are not

sure which.

Then, we can ask how this initial information propagates

forward in time as the disease progresses. To advance one-step

forward in time, we apply the transition matrix once to the initial-

state vector, thus:

~vv1~~vv0Af :

This gives us our new state-vector~vv1 after step one. For the next

step, we apply the transition matrix again, this time to~vv1:

~vv2~~vv1Af ~~vv0A2
f :

The dynamical system proceeds according to eqns (2) in a

manner consistent with the schematic diagram from Figure 1. As

described in the introduction, it is best to think of the entries of the

state-vector as probabilities for metastases developing at each of

the discrete sites in our model (and in the data set), thus for the

seed to take root in the soil. The entries of the state-vector ~vvk

continually get redistributed in time, as measured in discrete steps

k, until they reach the target steady-state distribution. A different

interpretation of the entries of the state-vector at each discrete step

is that they reflect the ensemble statistical distribution of a collection of

agents executing a random walk across the network. We should

point out, however, that for the ensemble of random-walkers all

leaving from the lung site, the best way to measure the passage of

time is via mean first-passage times to each of the sites, which we

compute using Monte Carlo simulations. It is important to keep in

mind that since the transition matrix is constructed based on an

autopsy data set, there is no direct information available on time-

histories of progression, only tumor distribution at time of

death. A big advantage of using this data set is that we are able

to build a model based on the ‘natural’ progression of the disease

(i.e. untreated patients), whereas clinical data on time-histories of

progression for untreated patients do not exist, as far as we are

aware. Therefore, our challenge is to extract as much information

as we can using the autopsy data set [6], keeping in mind that time

should be interpreted only as the model timescale of progres-

sion. A next step would be to calibrate these model timescales with

separate data sets containing time progression information, not

something we consider in this paper.

Now comes a natural and important question. After long-times

(k large), is there some steady-state distribution that is achieved by

the model? Correspondingly, given a particular primary tumor,

what are long-term probabilistic distributions of possible metasta-

ses? We call this distribution vector~vv(0)
? , and define it as:

~vv(0)
? ~limk??~vv0Ak

f : ð3Þ

Notice that if a steady-state distribution is achieved, then for

sufficiently large k,~vv(0)
kz1*~vv

(0)
k , and since

~vv(0)
kz1~~vv

(0)
k Af , ð4Þ

this implies that

~vv(0)
? ~~vv(0)

? Af : ð5Þ

Figure 2. Metastatic distributions from autopsy data set extracted from 3827 patients [6]. Y-axis in each graph represents a proportion
between 0 and 1. The sum of all the heights is 1. These are the two key probability distributions used to ‘train’ our lung cancer progression model.
(a) Overall metastatic distribution including all primaries. We call this distribution the ‘generic’ distribution as it includes all primary cancer types.;
(b) Distribution of metastases associated with primary lung cancer. We call this distribution the ‘target’ distribution that we label~vvT :
doi:10.1371/journal.pone.0034637.g002

Lung Cancer Progression via a Random Walk Model
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Thus

~vv(0)
? (Af {I)~0, ð6Þ

which means that~vv(0)
? is a left-eigenvector of Af corresponding to

eigenvalue l~1. This is a crucial and practical observation that

allows us to calculate the steady-state distribution~vv(0)
? directly from

the transition matrix. Since the rows of Af add to one, it always

has at least one eigenvalue that is 1, hence there is always at least

one steady-state distribution, but there may be more than one –

this depends in detail on the matrix structure, something the

eigenvalue distribution [40] can reveal.

The target distribution for lung cancer shown in Figure 2(b) and

labeled~vvT is not a steady-state for the matrix A0, i.e.

~vvT (A0{I)~(~vvT{~vv(0)
? )(A0{I)=0, ð7Þ

since E~vvT{~vv(0)
? E2

=0:

Figure 3. The converged lung cancer network shown as a circular, bi-directional, weighted graph. We use sample mean values for all
edges connecting sites in the target distribution. The disease progresses from site 23 (lung) as a ‘random walker’ on this network. Arrow heads placed
on the end or ends of the edges denote the direction of the connections. Edge weightings are not shown. There are 50 sites (defined in Table 1)
obtained from the full data set of [6], with ‘Lung’ corresponding to site 23 placed on top. The 27 sites that are connected by edges are those from the
target vector for lung cancer defined in Table 1.
doi:10.1371/journal.pone.0034637.g003

Lung Cancer Progression via a Random Walk Model
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Structure of the Lung Cancer Matrix and Convergence to
the Steady-state

Figure 3 shows the network diagram associated with the

ensemble averaged converged matrix - this is the lung cancer

network conditioned on our initial guess A0 averaged over 1000

training sessions. Each of the sites has incoming and outgoing

edges (denoted with arrow heads) which connect it to other sites in

the target distribution where the cancer can spread, and each of

the edges have a probabilistic weighting (not shown), with the

constraint that the weightings associated with all outgoing edges at

each site must sum to 1. The disease spreads across the network

from an initial site following a random walk. To minimize the

number of edges depicted in the figure, we have combined

incoming and outgoing edges whenever possible, and placed arrow

heads on both ends of an edge, instead of plotting the two edges

separately.

In Figure 4 we plot the (mean) edge weightings of the outgoing

edges from the lung, as compared with the values of the target

distribution shown in Figure 2(b). The differences show that the

values in the lung row of Af have adjusted from their initial values

in A0: Figure 5 and Figure 6 highlight our interpretation of the

transition probabilities, or edge values of the network, as random

variables. We show in these figures the distributions associated

with the ensemble of lung to regional lymph node (Figure 5) edge

values, and those associated with the lung to adrenal (Figure 6)

edge values. In each case, we histogram the edge values from the

1000 converged matrices, and use the sample means and variances

to overlay a corresponding normal distribution. The vertical

dashed lines in Figures 5 and 6 show the initial value of the

transition probability from lung to regional lymph nodes (Figure 5)

and lung to adrenal (Figure 6). These initial values used in the

matrix A0 are obtained using the entire data set of DiSibio and

French [6], i.e. over all primary cancer types. The converged

Gaussian distributions shown in these figures, however, are specific

to lung cancer only. The fact that the mean is clearly shifted to the

left of the vertical line in Figure 5 indicates that the lung to

regional lymph node connection for lung cancer is less significant,

statistically, than for other cancer types. A possible anatomical

explanation for this left shift could be the fact that regional lymph

nodes, for lung cancer, are located very close to the lung itself,

compared with their typical distance away from other primary

tumor locations. Because of this unusually close proximity,

regional lymph nodes could easily have been mistakingly

considered as part of the lung in some of the autopsies in the

series, effectively reducing the significance of the lung to regional

lymph node connection. By contrast, the right shift of the mean,

shown in Figure 6 for the lung to adrenal connection, would

indicate that the lung to adrenal connection is statistically more

important for lung cancer than for other primary cancer types.

This could be due to the documented anatomic connection

between lung and adrenal that is known, but has not, to date, been

a particular focus of lung cancer metastasis studies.

The dynamical system defined by the Markov process:

~vvkz1~~vvkAf , (k~0,1,2,,,,) ð8Þ

Figure 4. Weight of outgoing edges from the lung (using sample mean values from ensemble) as compared with the ‘target’
distribution.
doi:10.1371/journal.pone.0034637.g004

Lung Cancer Progression via a Random Walk Model
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can be thought of as governing the statistical distribution

associated with random walkers traversing the network. Figures 7

and 8 show the dynamical progression of the initial state vector,

starting with an initial state-vector corresponding to a lung tumor,

i.e. 1 in position 23, with 0’s elsewhere. In the sequence, the target

vector ~vvT is depicted with filled bars, while the vector ~vvk (for

k~0,2,5,?) is depicted with unfilled bars. Convergence to the

target is exponential. By k = 5, convergence to the steady-state is

essentially complete.

First and Second Order Sites
The 27 metastatic sites associated with lung cancer shown in the

distribution of Figure 2(b) can be separated into two distinct

groups in light of the ensemble averaged transition probabilities

listed in decreasing order in Table 2. The middle column of this

table shows the transition probability going directly from the lung

to each of the 27 sites of the target vector (ensemble

averaged6standard deviations). The right column of the table

shows the most likely two-step path from lung to each of the sites

listed on the left, via the most probable intermediate site. Thus it

shows the product of the direct transition probability from lung to

an intermediate site (in parentheses on right), times the transition

probability from that intermediate site to the site listed on the left.

When one compares these values (all are ensemble averaged) it is

clear that the top 20 sites (listed above the cut-off line) have direct

transition values higher than their most probable two-step

transition, hence we call these ‘first-order’ sites. If the disease

reaches one of these sites, the most likely path is directly from the

lung after one-step. A random walker, leaving the lung site, after it

chooses one of the available outgoing edges with probability

corresponding to the edge weighting, will first visit one of these

first-order sites. The most heavily weighted edges, hence the most

likely first site visits, will be lymph nodes (reg) and adrenal,

accounting for roughly 28% of the first-site visits. The next two

most heavily weighted sites are lymph nodes (dist) and liver. These

four sites account for roughly 50% of the first site visits of an

ensemble of random walkers.

The remaining 7 sites (below the cut-off, starting from skin) have

two-step transition path probabilities that are equal to or more

probable than their direct one-step path from lung (taking into

account standard deviations). We call these the ‘second-order’

sites. The interpretation of these sites is if there is a metastatic

tumor at one of these sites, it is equally probable, or more probable

that there is also a metastatic tumor at an intermediate site, most

probably the lymph nodes (reg) or adrenal gland. Skin is the most

significant second-order site, suggesting a possible pathway from a

primary tumor in the lung to a metastatic tumor on the skin via the

Figure 5. Histogram of edge values from lung to lymph nodes (reg) for 1000 trained Af ’s, showing that edge values (transition
probabilities) are best thought of as random variables which are (approximately) normally distributed. Dashed vertical line shows
initial edge value associated with A0: Normal distribution with sample mean (0.15115) and variance (0.01821) is shown as overlay.
doi:10.1371/journal.pone.0034637.g005

Lung Cancer Progression via a Random Walk Model
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lymph node (reg) or adrenal gland (not shown, but almost as

probable).

The classification of sites allows us to quantify possible disease

progression paths (described in terms of ‘random-walkers’) from

lung to a given metastatic location. This is shown in Figure 9

where we focus on the multiple pathways by which cancer can

spread from a primary lung tumor to the liver. We show in the

figure the outgoing connection from lung to liver (with weight

0.0802860.00946), since liver is a first-order site. Roughly 92% of

the random walkers, however, do not transition to liver on the first

step, but go instead to a different first-order site. Some of these will

pass to the liver on the second step, as shown by the directed (solid)

arrows. Still others pass to a second-order site, and then to the

liver, as shown by the directed (dashed) arrows. In this way, all

possible pathways to the liver from lung can be compared

probabilistically and one can make quantitative predictions on

which other sites might have metastases if a lung cancer patient

develops a metastatic liver tumor.

Self-seeding Sites
A recent focus in the literature has been on the possibility that

tumors can ‘self-seed’ (see [31,33]) since that process would help

explain the exceptionally rapid (‘Gompetzian’ [34]) growth of

certain primary tumors. In addition, these papers discuss the

possibility, not yet proven experimentally, that self-seeding could

potentially occur from a metastatic site back to itself, i.e.

‘metastasis re-seeding’. The focus on self-seeding of the primary

tumor (circulating tumor cells that colonize their tumors of origin)

demonstrated convincingly in mouse models [33] has led to the

general concept that cancer progression, and hence progression

pathways, may not be a strictly uni-directional process of

progression from primary tumor to sequentially distant metastatic

sites. It may well involve aspects that are more multi-directional in

nature, such as tumor self-seeding, re-seeding of the primary

tumor from a metastatic tumor, or re-seeding of a metastatic site

from the metastatic tumor. Experimental evidence and the

development of theoretical models that support this, is currently

an active area of research. In our model, a site that is self-seeding is

one in which a random-walker leaving that site can return directly.

The simplest way (but not the only way) to do this would be after

one step, if the site has an edge connecting back to itself. This

would correspond to a non-zero probability in the diagonal entry

of the transition matrix. We list in Table 3 the sites that have this

property, along with the edge weighting, listed from strongest to

weakest. For primary lung cancer, the most strongly weighted self-

connecting edges are the lymph nodes (reg and dist), liver, adrenal,

bone, and lung. A more thorough analysis of this potentially

important multi-directional mechanism of progression for each

Figure 6. Histogram of edge values from lung to adrenal for 1000 trained Af ’s showing that edge values (transition probabilities)
are best thought of as random variables which are (approximately) normally distributed. Dashed vertical line shows initial edge value
associated with A0: Normal distribution with sample mean (0.13165) and variance (0.01953) is shown as overlay.
doi:10.1371/journal.pone.0034637.g006
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Figure 7. Panel showing progression of state vector~vvk for lung cancer primary using the ensemble averaged lung cancer matrix.
Filled rectangles show the long-time metastatic distribution from the autopsy data in Figure 2(b), unfilled rectangles show the distribution at step k
using the Markov chain model. (a) k = 0; (b) k = 2.
doi:10.1371/journal.pone.0034637.g007
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Figure 8. Panel showing progression of state vector~vvk for lung cancer primary using the ensemble averaged lung cancer matrix.
Filled rectangles show the long-time metastatic distribution from the autopsy data in Figure 2(b), unfilled rectangles show the distribution at step k
using the Markov chain model. (a) k = 5; (b) k = ‘.
doi:10.1371/journal.pone.0034637.g008
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given type of primary cancer, along with the average time it takes

to self-seed will be the topic of a separate publication.

Mean First-passage Times
An important quantity associated with our model is called

‘mean first-passage time’ to each of the sites – how many steps, on

average, does it take for a random walker to pass from the lung site

to each of the other sites. This gives us a model based timescale

(not limited to take on discrete values) associated with disease

progression, something a static autopsy data set cannot give us

directly. It is important to keep in mind that these values are model

based only, they do not arise from comparisons of disease time

histories, something that could be done with a different data set

that contains time progression information. To calculate these

times, we follow a random walker starting at the lung position,

progressing from site to site until all of the sites have been visited at

least one time. Using this method for roughly 10,000 of these

random walkers, we collect statistical information on the mean

first-passage time to each of the sites, i.e. the average number of

steps it takes to first arrive at each site. We show below in Table 4

the mean first-passage times from the lung site, which we obtain by

Monte Carlo simulations using an ensemble of 10,000 realizations,

where each realization is run long enough in time so that all sites

identified by the lung cancer target vector are visited at least once.

We emphasize that the mean first-passage times are distributed

over a range of positive values quite distinct from the discrete

values required in the underlying Markov process.

Despite the fact that these mean first-passage times are model-

based (i.e. time passage information is not directly in the data set)

they are interesting from several points of view. The normalized

values, shown in the right column of the table, are obtained by

dividing each entry of the un-normalized column by the lymph

node (reg) passage time time of 5.6414. This way, everything is

measured with respect to the time associated with the progression

from lung to regional lymph nodes, providing a relative predictive

timescale for average progression. If a patient with a primary lung

tumor progresses to a metastatic tumor in the regional lymph

nodes after one year, one might expect it to take roughly another 6

months to progress to the distant lymph nodes, or roughly 9

months to the adrenal gland. The interpretation is not that the

disease will spread from lung to lymph nodes to liver to adrenal,

etc. all in one individual patient (since the model is based on an

ensemble data set), but that one, or perhaps several of these

secondary sites will eventually produce metastatic tumors, and we

have a predictive handle on the progression timescales. The mean

first-passage time histogram is plotted in Figure 10 and gives a

visual representation of the relative timescales to each of the sites.

The sites seem to be grouped into approximately three clusters. In

the first group, consisting of sites LN (reg) - Bone, there is an

approximate linear increase in the mean first-passage times. The

second grouping (Kidney - Peritoneum) also increases linearly, but

on a slightly shifted line. The third grouping (Large intestine -

Uterus) increases (roughly) exponentially. Sites in this group, with

very large mean first-passage times, like prostate or bladder, would

be ones in which, if a metastatic tumor does appear, would

indicate poor prognosis as other areas would have had a lot of time

and ‘probabilistic’ opportunities to develop tumors as well.

Not shown in the table and figure are mean first-passage times

from sites other than lung. But it is worth pointing out that we

have calculated these times starting at all 50 sites, and the shortest

mean first passage time occurs from pleura to adrenal, with a un-

normalized time of 1.02, or normalized value of 0.1811. This

exceptionally short passage time indicates that if the lung tumor

does progress to the pleura, one might expect a short time later for

progression to occur to the adrenal gland. As mentioned earlier,

this is another possible indication of the potential importance of

adrenal gland involvement in lung cancer progression. We are

currently comparing our model based mean first-passage times

with other data sets that contain the time-history of the disease in

individual patients and ensembles.

Discussion

The computational model we develop and discuss in this paper

is an ensemble based Markov chain/random walk model of

disease progression in which we use a stochastic transition matrix

with entries that are (approximately) normally distributed. The

model can help us quantify pathways of progression for lung

cancer, and can be used as a baseline model in which to compare

more targeted models which use correlations among sites making

up the ensemble (i.e. the individual patients making up the

Table 2. One and two-step transition probabilities.

Target Sites
One-step transition
prob (Avg)

Two-step transition
probs

Lymph Nodes (reg) 0.1511560.01821 0.02819 (LN (reg))

Adrenal 0.1316560.01953 0.01397 (LN (reg))

Lymph Nodes
(dist)

0.1192860.00279 0.01860 (LN (reg))

Liver 0.0802860.00946 0.01440 (LN (reg))

Kidney 0.0667760.01231 0.00709 (LN (reg))

Bone 0.0591460.00196 0.00931 (LN (reg))

Lung 0.0522360.01504 0.01214 (LN (reg))

Pleura 0.0473560.00338 0.00657 (LN (reg))

Pancreas 0.0466060.00785 0.00549 (LN (reg))

Heart 0.0363960.00739 0.00407 (LN (reg))

Spleen 0.0341560.00454 0.00432 (LN (reg))

Brain 0.0327460.00728 0.00360 (LN (reg))

Thyroid 0.0318060.00628 0.00356 (LN (reg))

Pericardium 0.0273360.00557 0.00306 (LN (reg))

Diaphragm 0.0216960.00216 0.00289 (LN (reg))

Large Intestine 0.0172460.00266 0.00219 (LN (reg))

Gallbladder 0.0101560.00048 0.00145 (LN (reg))

Stomach 0.0094960.00139 0.00119 (LN (reg))

Small Intestine 0.0078660.00158 0.00149 (LN (reg))

Skeletal Muscle 0.0041360.00093 0.00047 (LN (reg))

Skin 0.0043960.00443 0.00203 (LN (reg))

Peritoneum 0.0038460.00567 0.00308 (LN (reg))

Omentum 0.0030560.00223 0.00103 (LN (reg))

Prostate 0.0006460.00060 0.00025 (LN (reg))

Vagina 0.0005260.00059 0.00025 (LN (reg))

Bladder 0.0000960.00029 0.00023 (Adrenal)

Uterus 0.0000760.00025 0.00022 (Adrenal)

The 27 target sites listed in decreasing order of their edge weights (ensemble
average values) from lung site. The 20 sites above the ‘cut-off’ are called ‘First-
Order’ sites. Their direct connections from the lung are strong enough so that
they represent the most likely route to that site. The 7 sites listed below are
called ‘Second-Order’ sites. Their connections from the lung are sufficiently
weak that it is equally or more likely (taking into account standard deviations)
to get to the site via some other first-order site (shown in parentheses).
doi:10.1371/journal.pone.0034637.t002
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ensemble), and use timescale information on disease progression.

The model underscores the importance of the complex and

heterogeneous nature of the connections among the many

potential metastatic locations and bolsters the case for a fairly

complex view of the importance of a whole host of subtle

connections among sites that may or may not produce clinically

detectable tumors, but that seem crucial in the eventual detailed

understanding of cancer progression. We believe this autopsy

based ensemble study gives important baseline quantitative insight

into the structure of lung cancer progression networks that will be

useful for future comparisons. Similar techniques can be used for

other primary cancer networks. Three key findings based on the

model are:

(i) Metastatic sites can be classified into ‘first-order’ and

‘second-order’ sites based on the comparative values of the

one-step vs. two-step transition probabilities. This allows us

to lay out the layers of progression from lung to a given site,

such as liver, shown in Figure 9 which lays the groundwork

for a complete probabilistic classification of all pathways

from primary tumor sites to metastatic locations;

(ii) The classification and quantification of ‘self-seeding’ transi-

tion values gives us a network based interpretation of some

recent biological insights [33] that will be the focus of a

separate study on probabilistic mechanisms of multi-

directionality;

(iii) Model based mean first-passage times give us relative time

information (based on average passage time to regional

lymph nodes) about progression that can be used for future

comparisons with data sets that contain time progression

histories.

An important current direction of this work is to develop ‘data

assimilation’ tools that would allow us to incorporate new data

(non-autopsy data, individual patient histories, data made up of

patients with targeted treatments, etc.) into the ensemble model.

The problem is similar to that encountered by the weather

Figure 9. Probabilistic decomposition of pathways from lung to liver. First transition probability is directly from lung to liver
(0.0802860.00946). Paths from the first-order sites to liver are shown as solid arrows. Paths from second-order sites to liver are shown as dashed
arrows.
doi:10.1371/journal.pone.0034637.g009
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prediction community [35] where these techniques have been

highly developed and have played a crucial role in going from

generic model-based calculations to targeted and accurate short

term calculations that focus on prediction and quantifying the

uncertainty inherent to the predictions [36].

Methods

Because we are computing the entries of a 50650 matrix using

only the 50 entries of our target steady-state, the solution to this

problem is not unique, a problem which is addressed in the works

of [37], [38], and [39] for example. In those papers, the solution to

this constrained linear inverse problem is obtained by identifying

the transition matrix that satisfies a certain maximum entropy

condition, and also one obtained by satisfying a least-squares

condition. More relevant to our problem is a criterion which

targets a family of solutions by pre-conditioning the search on an

approximate transition matrix informed by the data, followed by

an iteration process which then adjusts the entries until a transition

matrix with the correct steady-state is obtained. We show that this

process converges, and we use the algorithm to create an ensemble

of transition matrices whose entries are best interpreted as

(approximately) normally distributed random variables. We then

characterize the ensemble of stochastic transition matrices using

the means and variances of the singular value distributions [40]

associated with the ensemble.

Algorithm to Compute the Markov Transition Matrix
The three key steps in computing the transition matrix are:

(i) Step 1 - The choice of initial matrix A0: First, an

approximate transition matrix, A0, is obtained based on

information we extract directly from the data set [6]. For the

‘lung row’ of A0, we use the lung target distribution shown

in Figure 2(b), which is the metastatic distribution in a

population of people with lung cancer primary tumors. This

is our first approximation to how the outgoing edges from

the lung are weighted. On all of the other 49 rows, we use

the generic distribution shown in Figure 2(a). Since we do

not know, a priori, how any of the other metastatic sites

communicate with any of the others, we use this ‘agnostic’

distribution for all of these non-lung rows. Two key

properties of A0 constructed this way are that it has

Rank = 2 (i.e. only two linearly independent rows), and it

does not have our target distribution shown in Figure 2(b) as

a steady-state, hence we know A0 is not the correct

Table 3. Self-edge weightings for each site.

Target Sites Self-edge weight (avg)

Lymph Nodes (reg) 0.186560.0152

Lymph Nodes (dist) 0.123160.0028

Liver 0.094560.0094

Adrenal 0.092960.0212

Bone 0.061660.0019

Lung 0.052260.0150

Kidney 0.047060.0143

Pleura 0.043460.0049

Pancreas 0.036060.0097

Spleen 0.028660.0057

Heart 0.026260.0088

Thyroid 0.023360.0076

Brain 0.023060.0092

Peritoneum 0.021160.0122

Pericardium 0.020360.0071

Diaphragm 0.019260.0031

Large Intestine 0.014160.0033

Skin 0.014060.0071

Small Intestine 0.009860.0019

Gallbladder 0.009760.0007

Stomach 0.008160.0019

Omentum 0.006860.0030

Skeletal Muscle 0.003260.0013

Bladder 0.002060.0025

Uterus 0.002060.0025

Vagina 0.001760.0012

Prostate 0.001760.0009

27 target sites and their self edge weights (ensemble average) listed in
decreasing order.
doi:10.1371/journal.pone.0034637.t003

Table 4. Mean first-passage times from lung.

Target Sites MFPT (unnormalized) MFPT (normalized)

Lymph Nodes (reg) 5.641460.4919 1.000060.0872

Lymph Nodes (dist) 8.354160.8096 1.480960.1435

Adrenal 10.034961.0068 1.778860.1785

Liver 10.613961.0226 1.881460.1813

Lung 13.028461.1497 2.309460.2038

Bone 16.027761.4508 2.841160.2572

Kidney 20.394461.9664 3.615160.3486

Pleura 22.932962.4375 4.065160.4321

Pancreas 26.435062.6438 4.685960.4686

Spleen 33.700963.4925 5.973960.6191

Heart 36.551363.6359 6.479160.6445

Brain 40.554064.3179 7.188660.7654

Thyroid 41.324064.0700 7.325160.7215

Pericardium 46.859964.1645 8.306460.7382

Diaphragm 51.337265.6196 9.100160.9961

Peritoneum 51.955565.4518 9.209760.9664

Large Intestine 69.050167.3192 12.239961.2963

Skin 79.200668.4505 14.039261.4979

Gallbladder 104.9654610.0373 18.606361.7792

Small Intestine 105.872369.9567 18.767061.7649

Stomach 122.4070612.7034 21.698062.2518

Omentum 155.6364615.8049 27.588362.8016

Skeletal Muscle 313.7172630.6400 55.609865.4313

Bladder 620.7585663.7243 110.0362611.2958

Prostate 630.6260668.4618 111.7854612.1356

Vagina 630.8929664.6222 111.8327611.4550

Uterus 633.1578663.9966 112.2342611.3441

Mean first-passage times (unnormailzed and normalized) from lung to each
target site, obtained by Monte Carlo simulation. Histogram plot is shown in
Figure 12.
doi:10.1371/journal.pone.0034637.t004
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transition matrix for lung cancer. Therefore, we perform an

iteration process in Step 2 which adjusts the entries of A0 to

arrive at a final transition matrix Af that has higher rank

(typically the same rank as the number of entries in the

target vector), and has the target distribution (Figure 2(b)) as

a steady-state.

(ii) Step 2 - The iteration process to Af : A0, is then used to start

an iteration process where the entries are adjusted

iteratively, using randomized adjustments, until its steady-

state distribution converges to the target distribution. The

converged matrix obtained after this process is what we call

the ‘trained’ lung cancer matrix, Af . We will discuss this key

step further below.

(iii) Step 3 - Creating an ensemble of Af’s: Because the iterative

procedure is based on random adjustments of the matrix

entries, and because we adjust the entries only up to some

pre-determined numerical value defined as our convergence

threshold (typically chosen to be O(10{5)), the transition

matrices produced from Step 2 should be thought of as

having entries that have some inherent probability distribu-

tion associated with them, with a sample mean and variance

obtained by collecting an ensemble of these matrices. We

will show two of the key edge probability distributions (lung

to regional lymph nodes, and lung to adrenal) and also

discuss the statistical spread of the ensemble of transition

matrices using their singular value distributions as a

diagnostic tool.

Convergence of the Algorithm
We now describe Step 2 of our algorithm in more detail, the

iterative training stage which takes us from our initial matrix A0, to

our final matrix Af : Define the transition matrix after step j in the

iteration process to be Aj , with corresponding steady-state v(j)
?

defined as

~vv(j)
?(Aj{I)~0: ð9Þ

Our goal is to find the entries of Aj so that

~vvT (Aj{I)~0, ð10Þ

i.e. so that E~vv(j)
?{~vvTE2~0. We do this iteratively as follows. Since

~vvT=~vv
(j)
?, we can define a ‘residual’ at step j:

~vvT (Aj{I)~~rrj:(~vvT{~vv(j)
?)(Aj{I), ð11Þ

where E~rrjE2
=0: Our goal is to find the entries of Aj so that

E~rrjE2
ƒE%1 where e is defined as our numerical convergence

threshold. In practice, we do this by calculating E~vvT{~vv(j)
?E2

directly and iterate the entries of Aj until E~vvT{~vv(j)
?E2

vE, where

typically we take E~O 10{5
� �

.

Stated more generally, our goal is to solve the following linear

constrained optimization problem. Given a target vector~vvT , find

Figure 10. Mean first-passage time histogram for Monte Carlo computed random walks all starting from lung. Error bars show one
standard deviation. Values are normalized so that lymph node (reg) has value 1, and all others are in these relative time units.
doi:10.1371/journal.pone.0034637.g010
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the entries aij of the matrix A to minimize the Euclidean norm of

the residual vector~rr, where:

~vvT (A{I)~~rr: ð12Þ

The constraints are 0ƒaijƒ1, and
P50

j~1 aij~1: Most

importantly, we have pre-conditioned the iterative process in Step

1 on our particular initial matrix A0: The general framing of this

problem as a constrained optimization problem is discussed in

[37–39].

To do this, we iteratively adjust the entries of Aj at each step (so

as to maintain the constraint that all rows sum to one) according to

the following algorithm:

1. Calculate the residual~rrj at step j, starting with A0, (j = 0);

2. Pick the column of Aj corresponding to the maximum entry of

~rrj ;

3. Pick the column of Aj corresponding to the minimum entry of

~rrj ;

4. Pick a row of Aj at random;

5. Decrease the entry of Aj selected in step (ii) by d, increase the

entry of Aj selected in step (iii) by d, where d is scaled with the

size of E~rrjE2: This new matrix is Ajz1;

6. Calculate the new E~rrjz1E2 and stop if E~rrjz1E2
vE: Otherwise

go to step (ii) and repeat the process.

Because of the randomized nature of the algorithm, and

because of the finite threshold of convergence, the converged final

matrix Af will be slightly different each time the iterative process is

carried out, even when all the trained matrices start with the same

initial A0. Thus, we carry out the iteration and convergence

process, producing an ensemble of 1000 final transition matrices

Af , and we show the convergence (down to O(10{5)) of the

ensemble in Figure 11 (plotted on a semi-log plot). The solid curve

is the average convergence rate computed from the 1000 training

sessions, while the error bars show the standard deviations

associated with the ensemble, showing the spread of the

convergence rates, which are relatively tight.

Figure 11. Ensemble convergence to Af , starting from A0 . y-axis is E~rrjE2z, x-axis is step j. We use an ensemble of 1000 trained matrices Af ,
each conditioned on the same initial matrix A0: The average convergence curve is shown, along with standard deviations marked along each decade
showing the spread associated with the convergence rates.
doi:10.1371/journal.pone.0034637.g011
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Singular Values and Properties of the Ensemble
A very useful diagnostic tool to characterize the structure and

understand the statistical spread associated with the matrices in

the ensemble are the singular values, (ln (l1wl2w:::wl27w0),
associated with the collection of Af ’s. These are shown in

Figure 12, plotted from largest to smallest. Values shown (as open

circles) are the sample means associated with the singular values of

the ensemble of 1000 converged matrices Af , all trained using the

same initial matrix A0: The error bars show the sample standard

deviations, which are small. The 27 non-zero singular values

reflect the fact that there are 27 entries in the steady-state

distribution for primary lung cancer. An equivalent way to say this

is that the rank of Af is 27, while the nullspace dimension is

(approximately) 23. The standard deviations show the statistical

spread associated with two sources of uncertainty, one is the

random search algorithm we use to obtain convergence, and the

other is the convergence threshold, which we typically take to be

O(10{5): The small standard deviations indicate that the

algorithm is converging to the same final Af , within a relatively

small range of statistical spread. On this graph, we also show the

least squares curve fit to singular values l4 through l24, which

follow a slope b*{0:1389, indicating that the singular values

roughly decrease like ln*a exp ({bn) (a*0:1901): The two

diamond shaped data points on the graph correspond to the two

singular values of A0 reflecting the linear independence of the two

distributions from Figure 2 that we use in A0. We point out that

the Af ’s should not be viewed as small perturbations of A0 - our

convergence algorithm starts with a rank 2 matrix and generates

an ensemble of (approximately) rank 27 matrices all within a

relatively tight statistical spread.

We also show one other set of singular values on the graph with

the asterix data points. To test the robustness of the ensemble with

respect to perturbations of the initial matrix A0, we start the search

with an initial matrix of the form A0zEA1: Here, the perturbation

matrix A1 is a 50650 rank 2 matrix obtained by giving each entry

in the lung row a uniformly distributed random number in the

Figure 12. Average distribution of the 27 non-zero singular values associated with the ensemble of 1000 matrices Af all obtained
using the same A0. x-axis is the index n, y-axis is ln. Data points (open circles) indicate the sample average, with error bars showing the sample
standard deviations. Line is a least squares curve fit through l4 through l24, showing linear decrease with exponent b~{0:1389: The 27 non-zero
singular values reflect the fact that there are 27 entries in the steady-state target distribution for primary lung cancer. The two diamond shaped data
points are the two singular values associated with the initial matrix A0: The 27 ‘asterix’ data points are those obtained from a trained matrix using a
perturbed A0, with Rank 2 perturbation. See text for details.
doi:10.1371/journal.pone.0034637.g012
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interval [–1,1], and each entry in all the other rows another

uniformly distributed random number in the interval [–1,1]. This

creates a random rank 2 matrix. The perturbation parameter E is

chosen so that the perturbation size is (roughly) 5% as compared

with the average row value of A0. The asterix data points, which

correspond to a converged Af below a threshold of O(10{10), all

fall within the one standard deviation bars of the unperturbed

values, again showing that the final converged matrix is relatively

robust to small changes in the initial matrix A0: For definiteness,

when we make conclusions associated with Monte Carlo

simulations, we use the ensemble averaged set of Af ’s obtained

over a set of 1000 converged matrices, each converged to within

O(10{5): Because of this, we view the transition probabilities of

the Markov chain, i.e. the edge values in our network, as

themselves being random variables, with a standard deviation that

we can characterize.
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